140 research outputs found

    Asynchronous iterative computations with Web information retrieval structures: The PageRank case

    Get PDF
    There are several ideas being used today for Web information retrieval, and specifically in Web search engines. The PageRank algorithm is one of those that introduce a content-neutral ranking function over Web pages. This ranking is applied to the set of pages returned by the Google search engine in response to posting a search query. PageRank is based in part on two simple common sense concepts: (i)A page is important if many important pages include links to it. (ii)A page containing many links has reduced impact on the importance of the pages it links to. In this paper we focus on asynchronous iterative schemes to compute PageRank over large sets of Web pages. The elimination of the synchronizing phases is expected to be advantageous on heterogeneous platforms. The motivation for a possible move to such large scale distributed platforms lies in the size of matrices representing Web structure. In orders of magnitude: 101010^{10} pages with 101110^{11} nonzero elements and 101210^{12} bytes just to store a small percentage of the Web (the already crawled); distributed memory machines are necessary for such computations. The present research is part of our general objective, to explore the potential of asynchronous computational models as an underlying framework for very large scale computations over the Grid. The area of ``internet algorithmics'' appears to offer many occasions for computations of unprecedent dimensionality that would be good candidates for this framework.Comment: 8 pages to appear at ParCo2005 Conference Proceeding

    Preconditioned Chebyshev BiCG for parameterized linear systems

    Full text link
    We consider the problem of approximating the solution to A(μ)x(μ)=bA(\mu) x(\mu) = b for many different values of the parameter μ\mu. Here we assume A(μ)A(\mu) is large, sparse, and nonsingular with a nonlinear dependence on μ\mu. Our method is based on a companion linearization derived from an accurate Chebyshev interpolation of A(μ)A(\mu) on the interval [−a,a][-a,a], a∈Ra \in \mathbb{R}. The solution to the linearization is approximated in a preconditioned BiCG setting for shifted systems, where the Krylov basis matrix is formed once. This process leads to a short-term recurrence method, where one execution of the algorithm produces the approximation to x(μ)x(\mu) for many different values of the parameter μ∈[−a,a]\mu \in [-a,a] simultaneously. In particular, this work proposes one algorithm which applies a shift-and-invert preconditioner exactly as well as an algorithm which applies the preconditioner inexactly. The competitiveness of the algorithms are illustrated with large-scale problems arising from a finite element discretization of a Helmholtz equation with parameterized material coefficient. The software used in the simulations is publicly available online, and thus all our experiments are reproducible

    07071 Abstracts Collection -- Web Information Retrieval and Linear Algebra Algorithms

    Get PDF
    From 12th to 16th February 2007, the Dagstuhl Seminar 07071 ``Web Information Retrieval and Linear Algebra Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Newton additive and multiplicative Schwarz iterative methods

    Get PDF
    Convergence properties are presented for Newton additive and multiplicative Schwarz (AS and MS) iterative methods for the solution of nonlinear systems in several variables. These methods consist of approximate solutions of the linear Newton step using either AS or MS iterations, where overlap between subdomains can be used. Restricted versions of these methods are also considered. These Schwarz methods can also be used to precondition a Krylov subspace method for the solution of the linear Newton steps. Numerical experiments on parallel computers are presented, indicating the effectiveness of these methods.The Spanish Ministry of Science and Education (TIN2005-09037-C02-02); Universidad de Alicante (VIGROB-020); the U.S. Department of Energy (DE-FG02-05ER25672)

    The effect of non-optimal bases on the convergence of Krylov subspace methods

    Get PDF
    There are many examples where non-orthogonality of a basis for Krylov subspace methods arises naturally. These methods usually require less storage or computational effort per iteration than methods using an orthonormal basis (optimal methods), but the convergence may be delayed. Truncated Krylov subspace methods and other examples of non-optimal methods have been shown to converge in many situations, often with small delay, but not in others. We explore the question of what is the effect of having a nonoptimal basis. We prove certain identities for the relative residual gap, i.e., the relative difference between the residuals of the optimal and non-optimal methods. These identities and related bounds provide insight into when the delay is small and convergence is achieved. Further understanding is gained by using a general theory of superlinear convergence recently developed. Our analysis confirms the observed fact that in exact arithmetic the orthogonality of the basis is not important, only the need to maintain linear independence is. Numerical examples illustrate our theoretical results
    • …
    corecore